9 The heat or diffusion equation
In this lecture I will show how the heat equation
_ 2 2
u = ao"Au, o € R, (9.1)

where A is the Laplace operator, naturally appears macroscopically, as the consequence of the con-
servation of energy and Fourier’s law. Fourier’s law also explains the physical meaning of various
boundary conditions. I will also give a microscopic derivation of the heat equation, as the limit of a
simple random walk, thus explaining its second title — the diffusion equation.

9.1 Conservation of energy plus Fourier’s law imply the heat equation

In one of the first lectures I deduced the fundamental conservation law in the form u; + g, = 0 which
connects the quantity u and its flux q. Here I first generalize this equality for more than one spatial
dimension.

Let e(t, x) denote the thermal energy at time ¢ at the point € R*, where k = 1,2, or 3 (straight
line, plane, or usual three dimensional space). Note that I use bold fond to emphasize that x is a
vector. The law of the conservation of energy tells me that

the rate of change of the thermal energy in some domain D is equal to the flux of the
energy inside D minus the flux of the energy outside of D and plus the amount of energy
generated in D.

So in the following I will use D to denote my domain in R', R?, or R?. Can it be an arbitrary
domain? Not really, and for the following to hold I assume that D is a domain without holes (this
is called simply connected) and with a piecewise smooth boundary, which I will denote dD. This
technical term (piecewise smooth boundary) is not simple to define, but for this course it is enough
to think that the boundary has either tangent line (in 2D) or tangent plane (in 3D) in almost all of
its points; “almost” is necessary to include also such nice domains ar rectangles and cubes, which at
their vertices are not smooth.

Mathematically, the law of the conservation of energy can be written as

jt///De(t,m)dm — —ﬁgD alt, w)-ndS+//D £ (t, )de.

Here q is the flux (note that now it is a vector, naturally, since the notion of the flux assumes a
direction), n is the outward normal to the domain D, and the first integral in the right hand side is
taken along the boundary of D, the minus sign is necessary because n is the outward normal. The
dot denotes the usual dot product in R*. Function f* specifies the energy generated (or absorbed if
it is negative) inside D.

The divergence (or Gauss) theorem says that

ﬁéD q(t,x) - ndS = //D V- q(t,z)dx,
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where V is a differential operator, often called “del” or “nabla”, in Cartesian coordinates
V = (0y, 0y, 0s).

Putting everything together I get

///D(et(t’ x) +V-q(t,®) - (¢, m))dm —0,

which implies the fundamental conservation law in an arbitrary number of dimensions:
ee+V-qg—f"=0. (9.2)
To proceed, I will use the relation of the temperature v and the thermal energy e as

e(t,@) = c@)p(@)ult, ),

where c(x) is the heat or thermal capacity (how much energy me must supply to raise the temperature
by one degree) at the point «, and p(x) is the density at the point x, i.e., the mass per volume unit;
for many materials I can assume that both ¢ and p are constants (the reality is more complicated, in
many cases both ¢ and p depend not only the coordinate but also on the current temperature u thus
rendering the equations to be nonlinear, but I will avoid such complications in our course). Finally I
will use Fourier’s law that says that

The flux of the thermal energy is proportional to the gradient of the temperature, i.e.,

q(t,x) = —kVu(t, x),

where k is called the thermal conductivity. The minus sign describes the intuitively expected fact
that the heat energy flows from hotter to cooler regions (think about one dimensional geometry, when
Vu = uyg).
Hence . .
ut:—VkVu—&-f,
cp cp
or, using the notations
2k [ 2
af=—, f=—, A=V"=V.V,
cp cp
the nonhomogeneous heat equation
uy = o?Au + f. (9.3)

In Cartesian coordinates in 3D I have (assuming for the moment that f = 0)
= a? (Uge + Uyy + Uzz) .
If T am dealing with one-dimensional geometry my equation becomes
Up = 0Py,

which is a particular case of (9.1).



9.2 Initial and boundary conditions for the heat equation

In general, I will need the initial and boundary conditions to guarantee that my problem is well posed.
The initial condition is given by
U(0,$):g($), xeD,

which physically means that we have an initial temperature at every point of my domain D.

To consider different types of the boundary conditions I will concentrate on the case when I deal
with D C R!, i.e., my domain is simply the interval (0,1), > 0 on the real line. Physically one
should imagine a laterally isolated rod of length [, and I am interested in describing the changes in
the temperature profile inside this rod.

e Type I or Dirichlet boundary conditions. In this case I fix the temperature of the two ends of
my rod:
u(t,0) = hi(t), ult,l) = ha(t), ¢>0.

Please note that h; and he specify not the temperature of the surrounding medium around the
ends of the rod but the exact temperature of the ends themselves, which can be mechanically
achieved by using some kind of thermostats fixed at the ends.

o Type II or Neumann boundary conditions. In this case I fix the flux at the boundaries:

uﬂU(t? 0) = gl(t)7 um(t7 l) - 92(t)7

where g1(t) > 0, g2(t) > 0 imply that the heat flows from right to left, and from left to right
otherwise. The case g1 = g2 = 0 is very important and corresponds, clearly, to no flux condition,
or, in other words, to the insulated ends of the rod.

e Type III or Robin boundary conditions. This means that the temperature of the surrounding
medium is specified. I will use Newton’s law of cooling, together with Fourier’s law, to obtain
in this case

ul’(t’ 0) = %(u(t70) - Q1(t))’ uiﬁ(tvl) = —%(U(t,l) - QQ(t))7

where q1, ¢o are the temperatured at the left and the right ends respectively. Here k, as before,
the thermal conductivity, and h is so-called heat exchange coefficient (which is quite difficult to
measure in real systems). Here Newton’s law of cooling appears in the form of the difference
of two temperatures. Note also that I am careful about signs in my expressions to guarantee
that the heat flows from hotter to cooler places, as intuitively expected. Sometimes the same
boundary conditions can be written in a more mathematically neutral form as

aqu(t,0) + Prug(t,0) = qi(t), agu(t,l) + Paug(t,1) = g2(t),
for some constants «;, 3;, i = 1, 2.

Similarly the boundary conditions for two or three dimensional spatial domains can be defined. Some-
times some part of the boundary has Type I condition and another part has Type II condition. In
this case it is said that mixed boundary conditions are set. If h;, g;,q; are identically zero then it is
said that the boundary conditions are homogeneous.



Example 9.1. Suppose we have a copper rod 200 cm long that is laterally insulated and has an initial
temperature 0°C. Suppose that the top of the rod (z = 0) is insulated, while the bottom (z = 200)
is immersed into moving water that has the constant temperature of ¢2(t) = 20°C.

The mathematical model for this problem will be

PDE  w = c®ugy, 0<z <200, t>0,
ug(t,0) =0,
BC h
ug(t,200) = —E(u(t, 200) — 20),
IC u(0,z) =0, 0<z <200.

Exercise 1. Can you guess what happens with the solution to the previous problem when ¢ — 00?
Can you prove your expectations mathematically?

9.3 A microscopic derivation of the diffusion equation

Consider a one dimensional simple random walk. This means that I have, e.g., a particle that moves
h (note that this h has nothing to do with the h from the previous section!) units up with probability
p and h units down with probability ¢, p + ¢ = 1, starting from the origin, one step every 7 units of
time (see Figs. 1 and 2 for some inspiration). My goal in this problem is to determine the probability,
which I denote uj n, that after N steps (i.e., at the time ¢t = N7) I will find this particle at the
position kh, —N < k < N. The usual notation is

up,N =P (X = kh),
for the position X of the particle, which is an example of a random variable.

Exercise 2. Let p=¢q = %, N =3, h =1, what are ug 3, —3 < k <37 What is 222_3 up,3?
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Figure 1: Two examples of a symmetric (p = ¢ = 1/2) random walk with h =7 =1, N = 50.

Actually, the previous exercise can be solved exactly for arbitrary k and N. I am, however, is more
interested in understanding what happens if A,7 — 0 and hence my simple random walk becomes
continuous in both time and space. I will use, taking into account my limiting procedure, the notation

up, N = u(t,x).
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To obtain the desired result I write down the fundamental relation
u(t+ 7,2) = pu(t,x — h) + qu(t,x + h),

which literally says that the probability to find the particle at the position x at time ¢ + 7 can be
found as the sum of the probability to be at the position x — h at time ¢ times the probability move
up (which is equal to p) and the probability to be at the position =+ h at time ¢ times the probability
move down (which is ¢). (In probability theory this is called the law of total probability, but do not
worry if you did not see this before).

Now I assume that if h,7 — 0 then u becomes a sufficiently smooth function of  and ¢, such that
I can use Taylor’s series similar to what I did when I deduced the wave equation. I have

u(t+7,2) = u(t,x) + u(t, z)T + o(7),

1
u(t,r £ h) =u(t,z) £ u,(t,x)h + §um(t, z)h? + o(h?),

where g(z) = o( f(x)) means the terms such that lim,_,q % — 0. For example, 72 = o(7), h® = o(h?);
o(1) means any expression tending to 0 as * — 0. I plug these series into the fundamental relation,

cancel the terms that can be canceled and find that

h2
ut +0(7) = (¢ = p)hus + Sttze + o(h?).

Dividing by 7 yields

—p)h h? h?
ug +o(1) = Mum + —Ugy +0 (—) )
T 2T T

Now to get a meaningful result, I must consider a special way when both h and 7 tend to zero. First,

I assume that
h2
lim — =a®>0.
h,7—0 2T
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Figure 2: Left: ten realizations of a symmetric (p = ¢ = 1/2) random walk with h = 7 = 1 and
N = 1000. Right: ten realizations of a random walk with drift (p = 0.56, ¢ = 0.44).



Second,

_ VB2
T C ) L C el S S S
hr—0 T h7r—0  hT
for a constant 3, this can be always achieved by taking
1 B 1 B
q—§+§h+0(h), p—§—§h+0(h),

i.e., when the random walk is microscopically symmetric.
Now taking the limits 7, h — 0 yields the diffusion equation with drift (this is the term cu, below)

Up = a2um + Ccug.

If I do not have the drift, i.e., p = ¢ = 0.5, then I recover the familiar homogeneous one dimensional
heat equation
ur = gy

Now it should be clear why «? is often called the diffusivity or diffusion coefficient.
As a side remark I note that if o = 0 then I end up with the familiar linear transport equation

U — cuy = 0,

which has the general solution
u(t,x) = F(x + ct),

which is geometrically a linear traveling wave moving in the negative direction if ¢ > 0 (i.e., if ¢ > p,
note this corresponds to the movement from top to bottom in terms I described it) or in the positive
direction if ¢ < 0 (i.e, if ¢ < p, from bottom to the top), as expected.

As T a final remark I note that when h,7 — 0 then wu; ny ceases to be the actual probability
and becomes, in the language of probability theory, the probability density function such that the
probability to find a particle in the interval [z1, z2] at time ¢ becomes

2
P (2 < X <) = / u(t, z)dz.
x1
I can similarly consider a simple random walk on a plane, when each particle has four different
directions to move at each time moment, or in the space, when now my particle has six directions to
choose from. Assuming that the probabilities to move in each direction are the same I, after similar
analysis, can conclude that u must satisfy in the continuous limit to the equations

up = o (Uga + Uyy)

and
2
U = & (Ugg + Uyy + Us2)

respectively.



9.4 Test yourself
9.1. What is the definition of V?

9.2. Formulate Fourier’s law.
9.3. Formulate Newton’s cooling law.
9.4. Formulate Gauss (or divergence) theorem.

9.5. Use the definition of V to write Vu and V - Vu in Cartesian coordinates for a function u of three
independent variables. The same question for V - q for the vector ¢ € R?. What are the names
for the obtained results?

9.6. What physical system is described by the following problem:

u = gy, u(0,z) = g(x), wu(t,0)=u(t1)=17

9.7. What physical system is described by the following problem:

ur = gy, w(0,z) = g(x), uy(t,0) =uy(t,1)=17

9.8. What physical system is described by the following problem:

Up = 0 (Ugy + uyy), uw(0,7,9y) =g(z,y), 2°+y> <1, ult,z,y)=1, 2*+y*=17

9.5 Solutions to the exercises

FEzxercise 1. For this exercise I must assume that as time proceeds the temperature distribution settles
and (almost) does not change with time. Such temperature distribution is called stationary. If the
stationary distribution does exist, it means that the temperature does not depend on ¢ and hence
satisfies the ODE «” = 0, which has the general solution u(z) = Az + B, for some constants A, B.
First boundary condition yields A = 0, the second one — 0 = —%(B —20), whence B = 20. Therefore
the stationary distribution (as should be expected intuitively) is simply the constant u(x) =20. W

Ezercise 2. There is only one way to get to the position K = —3 or k = 3. In the former case I need
to jump 3 times to the right, the event of probability ¢, in the letter case, there will be three jumps
to the left, the event of probability p3. It is impossible to find itself in either k = 2 or k = —2 for 3
steps (as well as in k = 0), therefore, ug 3 = u_23 = ug3 = 0. Finally, there are three different ways
to reach both k = 1,k = —1. In the first case there will be 2 jumps to the left and one to the right, in
the second — 2 jumps to the right and one to the left, hence u; 3 = 3pq, U_13 = 3pq?. Clearly, the
answer for the second questions in this exercise is 1, in detail

3

> uks=p"+3p°q+3¢p+¢" = (p+9)°=1.
k=-3



